73 research outputs found

    Teacher socialization in physical education: new perspectives

    Get PDF
    This is an accepted manuscript of an article published by Taylor and Francis in Sport, Education and Society on 22/05/2019, available online: https://www.tandfonline.com/doi/abs/10.1080/13573322.2019.1618105 The accepted version of the publication may differ from the final published version.The socialization of physical education teachers has a significant impact on teaching and learning practices. Despite the plethora of previous research examining physical education teachers’ lives and careers, new research and perspectives are always required since educational, social and political cultures change. For this reason, this first edited collection of scholarship on physical education socialization for nearly three decades is long overdue. Teaching Socialization in Physical Education: New Perspectives adopts an innovative, cross-cultural approach, examining how physical education teachers develop and considering the factors that impact on their development and pedagogical practices, in addition to detailing future socialization research possibilities in the subject.Published versio

    Conversational homes

    Get PDF
    As devices proliferate, the ability for us to interact with them in an intuitive and meaningful way becomes increasingly challenging. In this paper we take the typical home as an experimental environment to investigate the challenges and potential solutions arising from ever-increasing device proliferation and complexity. We show a potential solution based on conversational interactions between “things” in the environment where those things can be either machine devices or human users. Our key innovation is the use of a Controlled Natural Language (CNL) technology as the underpinning information representation language for both machine and human agents, enabling humans and machines to trivially “read” the information being exchanged. The core CNL is augmented with a conversational protocol enabling different speech acts to be exchanged within the system. This conversational layer enables key contextual information to be conveyed, as well as providing a mechanism for translation from the core CNL to other forms, such as device specific API requests, or more easily consumable human representations. Our goal is to show that a single, uniform language can support machine- machine, machine-human, human-machine and human-human interaction in a dynamic environment that is able to rapidly evolve to accommodate new devices and capabilities as they are encountered

    Effect of topography on subglacial discharge and submarine melting during tidewater glacier retreat.

    Get PDF
    -We explored secular variations in subglacial discharge and submarine melting with an idealized model -Subglacial discharge increases as tidewater glaciers retreat along retrograde beds -Submarine melting depends on subglacial discharge and therefore promotes unstable retreat on retrograde bedsTo first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6–17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.Funding was provided by the National Oceanic and Atmospheric Association (NA13OAR4310098) and the U.S. National Science Foundation (PLR-1504288 and PLR-1504521).Ye

    Coalitions of things: supporting ISR tasks via Internet of Things approaches

    Get PDF
    In the wake of rapid maturing of Internet of Things (IoT) approaches and technologies in the commercial sector, the IoT is increasingly seen as a key ‘disruptive’ technology in military environments. Future operational environments are expected to be characterized by a lower proportion of human participants and a higher proportion of autonomous and semi-autonomous devices. This view is reflected in both US ‘third offset’ and UK ‘information age’ thinking and is likely to have a profound effect on how multinational coalition operations are conducted in the future. Much of the initial consideration of IoT adoption in the military domain has rightly focused on security concerns, reflecting similar cautions in the early era of electronic commerce. As IoT approaches mature, this initial technical focus is likely to shift to considerations of interactivity and policy. In this paper, rather than considering the broader range of IoT applications in the military context, we focus on roles for IoT concepts and devices in future intelligence, surveillance and reconnaissance (ISR) tasks, drawing on experience in sensor-mission resourcing and human-computer collaboration (HCC) for ISR. We highlight the importance of low training overheads in the adoption of IoT approaches, and the need to balance proactivity and interactivity (push vs pull modes). As with sensing systems over the last decade, we emphasize that, to be valuable in ISR tasks, IoT devices will need a degree of mission-awareness in addition to an ability to self-manage their limited resources (power, memory, bandwidth, computation, etc). In coalition operations, the management and potential sharing of IoT devices and systems among partners (e.g., in cross-coalition tactical-edge ISR teams) becomes a key issue due heterogeneous factors such as language, policy, procedure and doctrine. Finally, we briefly outline a platform that we have developed in order to experiment with human-IoT teaming on ISR tasks, in both physical and virtual settings

    Conversational homes: a uniform natural language approach for collaboration among humans and devices

    Get PDF
    As devices proliferate, the ability for us to interact with them in an intuitive and meaningful way becomes increasingly challenging. In this paper we take the typical home as an experimental environment to investigate the challenges and potential solutions arising from ever-increasing device proliferation and complexity. We describe and evaluate a potential solution based on conversational interactions between “things” in the environment where those things can be either machine devices or human users. Our key innovation is the use of a Controlled Natural Language (CNL) technology as the underpinning information representation language for both machine and human agents, enabling humans and machines to trivially “read” the information being exchanged. The core CNL is augmented with a conversational protocol enabling different speech acts to be exchanged within the system. This conversational layer enables key contextual information to be conveyed, as well as providing a mechanism for translation from the core CNL to other forms, such as device specific API (Application Programming Interface) requests, or more easily consumable human representations. Our goal is to show that a single, uniform language can support machine-machine, machine-human, human-machine and humanhuman interaction in a dynamic environment that is able to rapidly evolve to accommodate new devices and capabilities as they are encountered. We also report results from our first formal evaluation of a Conversational Homes prototype and demonstrate users with no previous experience of this environment are able to rapidly and effectively interact with simulated devices in a number of simple scenarios

    Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland

    Get PDF
    During summer 2013 we installed a network of 19 GPS nodes at the ungrounded margin of Helheim Glacier in southeast Greenland together with three cameras to study iceberg calving mechanisms. The network collected data at rates up to every 7 s and was designed to be robust to loss of nodes as the glacier calved. Data collection covered 55 days, and many nodes survived in locations right at the glacier front to the time of iceberg calving. The observations included a number of significant calving events, and as a consequence the glacier retreated ~1.5 km. The data provide real-time, high-frequency observations in unprecedented proximity to the calving front. The glacier calved by a process of buoyancy-force-induced crevassing in which the ice downglacier of flexion zones rotates upward because it is out of buoyant equilibrium. Calving then occurs back to the flexion zone. This calving process provides a compelling and complete explanation for the data. Tracking of oblique camera images allows identification and characterisation of the flexion zones and their propagation downglacier. Interpretation of the GPS data and camera data in combination allows us to place constraints on the height of the basal cavity that forms beneath the rotating ice downglacier of the flexion zone before calving. The flexion zones are probably formed by the exploitation of basal crevasses, and theoretical considerations suggest that their propagation is strongly enhanced when the glacier base is deeper than buoyant equilibrium. Thus, this calving mechanism is likely to dominate whenever such geometry occurs and is of increasing importance in Greenland

    Estimating Spring Terminus Submarine Melt Rates at a Greenlandic Tidewater Glacier Using Satellite Imagery

    Get PDF
    Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting, estimates of melt rates are uncertain. Here we estimate submarine melt rate by examining freeboard changes in the seasonal ice tongue of Kangiata Nunaata Sermia (KNS) at the head of Kangersuneq Fjord (KF), southwest Greenland. We calculate melt rates for March and May 2013 by differencing along-fjord surface elevation, derived from high-resolution TanDEM-X digital elevation models (DEMs), in combination with ice velocities derived from offset tracking applied to TerraSAR-X imagery. Estimated steady state melt rates reach up to 1.4 ± 0.5 m d−1 near the glacier grounding line, with mean values of up to 0.8 ± 0.3 and 0.7 ± 0.3 m d−1 for the eastern and western parts of the ice tongue, respectively. Melt rates decrease with distance from the ice front and vary across the fjord. This methodology reveals spatio-temporal variations in submarine melt rates (SMRs) at tidewater glaciers which develop floating termini, and can be used to improve our understanding of ice-ocean interactions and submarine melting in glacial fjords
    • 

    corecore